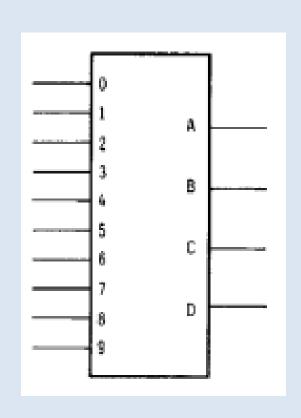
EQUIPOS MICROPROGRAMABLES

10. CODIFICADORES Y DECODIFICADORES

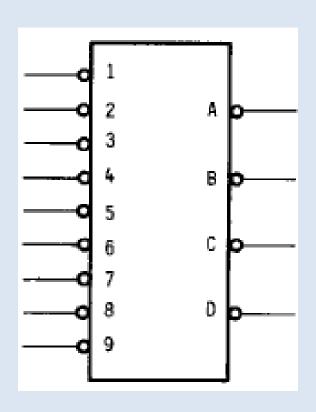
CÓDIGOS BINARIOS


- Un código binario es al sistema binario de unos y ceros lo que el idioma es al lenguaje humano.
- Son ordenaciones diferentes de unos y ceros para expresar un mensaje.
- A cada forma de ordenar los estados lógicos para dar una información se llama código binario.
- Para comunicarnos con la máquina usamos los codificadores.
- Para entender el idioma de la máquina usamos los decodificadores.
- Para que dos máquinas que usan distintos códigos puedan entenderse son necesarios los transcodificadores.

CÓDIGOS BINARIOS

- Hay una gran variedad de códigos binarios, algunos para funciones específicas.
- Se pueden diferenciar en función de su estructura, de su uso....
- Se pueden distinguir entre códigos pesados y no pesados, progresivos, continuos, cíclicos, detectores y correctores de errores...
- Básicamente hay cuatro lenguajes para introducir información a un sistema binario: Sistema octal, decimal, hexadecimal y alfanumérico.
- Los más usados son: Binario natural, BCD natural (Decimal Codificado en Binario), BCD exceso 3, octal, hexadecimal, complemento a 2 y ASCII y EBC DIC para los alfanuméricos.

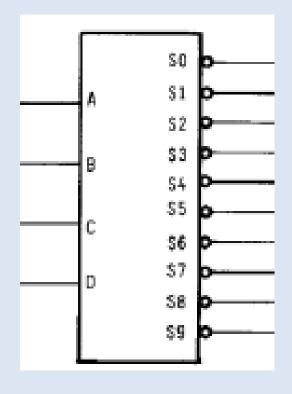
- Un codificador es un circuito que convierte la información presentada en un sistema de numeración o lenguaje alfanumérico en un código binario de unos y ceros. Veamos un codificador decimal a BCD natural.
- El primer paso es establecer la relación entre ellos.


				Entr	adas						Sal	idas	
0	1	2	ო	4	5	6	7	8	9	Ω	U	В	Α
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1

- Hay que considerar D, C, B y A como las salidas diferentes de un circuito en el que los números decimales son las entradas.
- En la realidad es innecesario codificar el número 0, ya que la salida es la misma que no codificar nada o decidir qué hacemos cuando se activen dos entradas a la vez.

 Un codificador decimal a BCD comercial es el 74147

			Em	trada	S					Sali	das	
1	2	3	4	5	б	7	8	9	D	С	В	A
1	1	1	1	1	1	1	1	1	1	1	1	1
X	X	X	X	X	X	X	X	0	0	1	1	0
X	X	X	X	X	X	X	0	1	0	1	1	1
X	X	X	X	X	X	0	1	1	1	0	0	0
X	X	X	X	X	0	1	1	1	1	0	0	1
X	X	X	X	0	1	1	1	1	1	0	1	0
X	X	X	0	1	1	1	1	1	1	0	1	1
X	X	0	1	1	1	1	1	1	1	1	0	0
X	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0



- Los círculos en entradas y salidas indican inversiones.
- Si eliminásemos las inversiones de entradas y salidas, cambiando los unos y ceros veríamos mejor la relación entre las entradas decimales y el código BCD.
- Con cuatro salidas D, C, B y A se podrían tener hasta 16 combinaciones, sin embargo en BCD sólo se pueden abarcar números de 0 a 9.

- Los decodificadores traducen la información del código binario al sistema humano de números y letras.
- Para construir decodificadores se sigue el mismo proceso que para los codificadores:
 - Cuadro de funcionamiento en el que se establece la correspondencia entre las entradas y las salidas.
- En el siguiente ejemplo se estudia el 7442, decodificador BCD natural a decimal.

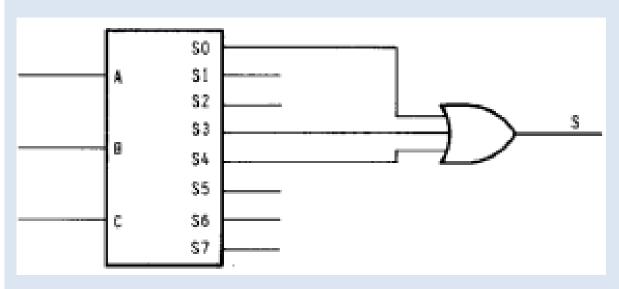
DECODIFICADOR 7442

	Entr	adas						Sal	idas				
D	С	В	A	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1	1	1
0	1	1	0	1	1	1	1	1	1	0	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0
I	Iasta (el fina	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1

 $\frac{\overline{S0} = \overline{D}.\overline{C}.\overline{B}.\overline{A}}{\underline{S2} = \overline{D}.\overline{C}.B.\overline{A}}$ $\frac{\overline{S2} = \overline{D}.\overline{C}.B.\overline{A}}{\underline{S4} = \overline{D}.C.\overline{B}.\overline{A}}$ $\frac{\overline{S6} = \overline{D}.C.B.\overline{A}}{\underline{S8} = \overline{D}.\overline{C}.\overline{B}.\overline{A}}$

 $\overline{S1} = \overline{D}.\overline{C}.\overline{B}.A$ $\overline{S3} = \overline{D}.\overline{C}.B.A$ $\overline{S5} = \overline{D}.C.\overline{B}.A$ $\overline{S7} = \overline{D}.C.B.A$ $\overline{S9} = D.\overline{C}.B.A$

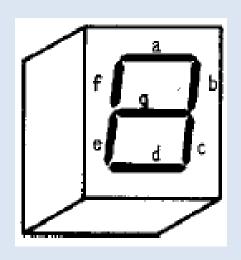
- El decodificador 7442 tiene nivel bajo activo.
- Es común a muchos decodificadores y demultiplexores.
- Se hace así para que la carga que se conecte a la salida se pueda alimentar a una tensión superior a los 5 voltios de la alimentación del integrado. En este caso la carga se conecta entre la salida y una alimentación positiva externa.
- Las salidas de un decodificador son productos canónicos de las entradas, como los demultiplexores.
- Un demultiplexor 1 X 8 es lo mimos que un decodificador 3 X 8. La entrada de dato es el permiso de funcionamiento.

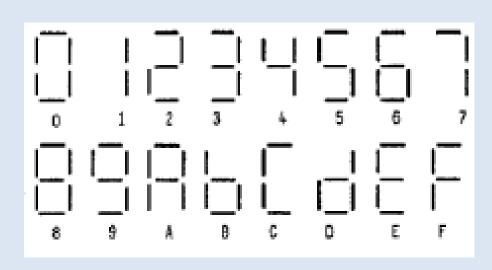

REALIZACIÓN DE FUNCIONES

С	В	A	S
0	0	0	S0
0	0	1	S1
0	1	0	S2
0	1	1	S3
1	0	0	S4
1	0	1	S5
1	1	0	S6
1	1	1	S 7

- Los decodificadores son generadores de productos canónicos.
- Cada salida es el producto canónico de las entradas.
- Si cambiamos la columna de salida por unos y ceros, podemos resolver el circuito sumando las salidas correspondientes a los unos.

REALIZACIÓN DE FUNCIONES


С	В	A	S	Sd
0	0	0	1	S0
0	0	1	0	S1
0	1	0	0	S 2
0	1	1	1	S3
1	0	0	1	S4
1	0	1	1	S 5
1	1	0	0	S6
1	1	1	0	S 7



• Si tuviéramos un decodificador con nivel bajo activo, la puerta O tendría que ser una No-Y.

DISPLAY DE 7 SEGMENTOS

- Es la forma usual de representar números.
- Se construye con 7 leds con un terminal común.
- Para su conexionado hay que tener en cuenta que se debe poner una resistencia para proteger a cada diodo.

CÓDIGOS BCD

BCD natural

Decimal BCD natural

Código BCD exceso 3 (XS3)

decimal	BCD XS3							
0	0	0	1	1				
1	0	1	0	0				
2	0	1	0	1				
3	0	1	1	0				
4	0	1	1	1				
5	1	0	0	0				
6	1	0	0	1				
7	1	0	1	0				
8	1	0	1	1				
9	1	1	0	0				

CÓDIGOS PESADOS BCD

BCD AIKEN

Dagimal	Decimal BCD								
Decimai		AIK	EN						
	2 4 2								
0	0	0	0	0					
1	0	0	0	1					
2	0	0	1	0					
3	0	0	1	1					
4	0	1	0	0					
5	1	0	1	1					
6	1	1	0	0					
7	1	1	0	1					
8	1	1	1	0					
9	1	1	1	1					

decimal	4	2	2	1	5	4	2	1
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	1	0	0	0	0	1	0	0
5	0	1	1	1	1	0	0	0
6	1	1	0	0	1	0	0	1
7	1	1	0	1	1	0	1	0
8	1	1	1	0	1	0	1	1
9	1	1	1	1	1	1	0	0

Código biquinario

decimal		Ι	3iq	uin	ari	0	
	5	0	4	3	2	1	0
0	0	1	0	0	0	0	1
1	0	1	0	0	0	1	0
2	0	1	0	0	1	0	0
3	0	1	0	1	0	0	0
4	0	1	1	0	0	0	0
5	1	0	0	0	0	0	1
6	1	0	0	0	0	1	0
7	1	0	0	0	1	0	0
8	1	0	0	1	0	0	0
9	1	0	1	0	0	0	0

CÓDIGOS

Código octal

Nº decimal	Nº octal	Código octal					
		4	2	1	4	2	1
0	0				0	0	0
1	1				0	0	1
2	2				0	1	0
3	3				0	1	1
4	4				1	0	0
5	5				1	0	1
6	6				1	1	0
4	7				1	1	1
8	10	0	0	1	0	0	0
9	11	0	0	1	0	0	1

Nº octal: 436

código octal: 100 011 110

• En general, cada cifra se traduce por separado en la combinación de unos y ceros correspondiente.

CÓDIGO HEXADECIMAL

Nº decimal	Nº hexadecimal	al Código hexadecimal							
		8	4	2	1	Ø	4	2	1
0	0					0	0	0	0
1	1					0	0	0	1
2	2					0	0	1	0
3	3					\circ	0	1	1
4	4					0	1	0	0
5	5					\circ	1	0	1
6	6					0	1	1	0
7	7					0	1	1	1
8	8					1	0	0	0
9	9					1	0	0	1
10	A					1	0	1	0
11	В					1	0	1	1
12	С					1	1	0	0
13	D					1	1	0	1
14	Е					1	1	1	0
15	F					1	1	1	1
16	10	0	0	0	1	0	0	0	0
17	11	0	0	0	1	0	0	0	1

CÓDIGOS NO PESADOS

Código Gray

octal	Gray							
0	0	0	0					
1	0	0	1					
2	0	1	1					
3	0	1	0					
4	1	1	0					
5	1	1	1					
6	1	0	1					
7	1	0	0					

Código Johnson

decimal	Código Johnson						
0	0	0	0	0	0		
1	0	0	0	0	1		
2	0	0	0	1	1		
3	0	0	1	1	1		
4	0	1	1	1	1		
5	1	1	1	1	1		
6	1	1	1	1	0		
7	1	1	1	0	0		
8	1	1	0	0	0		
9	1	0	0	0	0		

• No están limitados a una longitud de código.

CÓDIGO DETECTOR DE ERROR

dec.	BCD XS3 + bit impar							
0	0	0	1	1	0			
1	0	1	0	0	1			
2	0	1	0	1	0			
3	0	1	1	0	0			
4	0	1	1	1	1			
5	1	0	0	0	1			
6	1	0	0	1	0			
7	1	0	1	0	0			
8	1	0	1	1	1			
9	1	1	0	0	0			

- Consiste en añadir un bit de paridad.
- El bit de paridad aumenta la longitud del código.
- Permite detectar la existencia de un error.
- Cuando hay más de un error la palabra puede darse como buena si está dentro del código.
- Entre dos combinaciones siempre hay como mínimo dos columnas que cambian.
- A eso se le llama distancia mínima o distancia de código.

CÓDIGO CORRECTOR DE ERROR

Decimal		Hamming						
Deciliai	L7	L6	L5	L4	L3	L2	LI	
0	0	0	0	0	0	0	0	
1	0	0	0	0	1	1	1	
2	0	0	1	1	0	0	1	
3	0	0	1	1	1	1	0	
4	0	1	0	1	0	1	0	
5	0	1	0	1	1	0	1	
6	0	1	1	0	0	1	1	
7	0	1	1	0	1	0	0	
8	1	0	0	1	0	1	1	
9	1	0	0	1	1	0	0	
-	D	C	В	765	A	763	753	

• Es más una forma de trabajo. En caso de **un** error, permite detectar dónde se ha producido el error y por tanto corregirlo.

CÓDIGO ASCII DE 7 BITS

		0	1	2	3	4	5	6	7	
		000	001	010	011	100	101	110	111	
0	0000	NUL	DLE	SP	0	@	P	•	р	
1	0001	SOH	DC1	!	1	Α	Q	а	q	
2	0010	STX	DC2	"	2	В	R	b	r	
3	0011	EXT	DC3	#	3	· C	S	C	s	
4	0100	EOT	DC4	\$	4	D	T	ď	t	
5	0101	ENQ	NAK	%	5	E	U	е	u	
6	0110	ACK	SYN	&	6	F	V	f	v	
7	0111	BEL	ETB	•	7	G	W	g	w	
8	1000	BS	CAN	(8	Н	х	h	х	
9	1001	HT	EM)	9	I	Y	i	У	
Α	1010	LF	SUB	*	:	J	Z	j	z	
В	1011	VT	ESC	+	;	K	(k	(
C	1100	FF	FS	,	<	L	\	1	7	
D	1101	CR	GS	-	=	M	3	m	}	
E	1110	S0	RS	•	>	N	+	n	~	
F	1111	SI	US	/	?	0	-	0	DEL	

CÓDIGO COMPLEMENTO A 2

- Se usa en el cálculo binario, como una forma de representar números positivos y negativos.
- El bit más significativo representa el signo. Un 1 es negativo, un 0 es positivo.
- Si el número es positivo, su complemento a dos es igual que el binario.
- Para representar un número negativo, se invierte (complemento a 1) y se suma 1.
- Si el número es negativo, para conocer su valor se invierte (complemento a 1) y se suma 1.
- Complemento a 2 es complemento a 1 más 1.