Ejercicios electrónica digital resueltos

Ejercicio 1 - ejercicios_ed.pdf – pag. 1

En un determinado proceso industrial se verifica la calidad de unas piezas metálicas. Las piezas pasan a través de tres sensores que determinan el estado de las mismas. Si al menos dos sensores detectan defectos en las mismas serán desechadas.

- a) Escriba la tabla de verdad de la función de salida del detector de piezas defectuosas.
- b) Simplifique la función lógica mediante el método de Karnaugh.
- c) Implemente el circuito con puertas lógicas universales NAND.

Solución

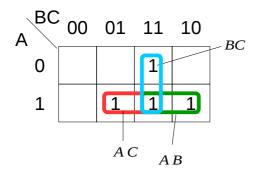
a)

Sensores A, B, C

El estado 0 de un sensor indica que la pieza es correcta, el estado 1 que es defectuosa.

El resultado del control S es 1 si dos o más sensores indican 1. En este caso, la pieza es defectuosa.

Tabla de verdad


A	В	С	Resultado del control S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

b)

Función lógica sin simplificar, generada mediante los resultados S = 1 y la correspondiente suma de productos (minterms).

$$S = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

Metodo de Karnaugh

Función lógica simplificada S = BC + AB + AC

Prueba con la tabla de verdad para S = BC + AB + AC

A	В	С	Resultado del control S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

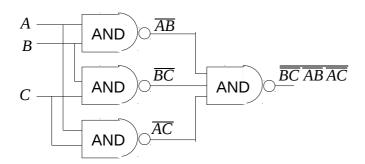
c) Inplementar el circuito con puertas lógicas NAND

Primero hay que transformar la función lógica en productos mediante los teoremas de De Morgan's

Negativ OR = NAND

Negativ OR $S = \overline{A} + \overline{B}$			
A	В	S	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

$ \begin{array}{c} NAND \\ S = \overline{AB} \end{array} $			
A B S			
0	0	1	
0	1	1	
1	0	1	
1	1	0	


Negativ AND = NOR

Negativ AND $S = \overline{A} \overline{B}$			
A B S			
0	0	1	
0	1	1	
1	0	1	
1	1	0	

$ \begin{array}{c} NOR\\ S = \overline{A + B} \end{array} $			
A	В	S	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Se aplica la transformación de Negativ OR a NAND.

$$S = BC + AB + AC = \overline{BC} \overline{AB} \overline{AC}$$

Ejercicio 2 - ejercicios_ed.pdf – pag. 1

Se pretende diseñar un circuito combinacional de cuatro bits de entrada, que detecte cuándo están activos los pesos 2^3 y 2^0 de la combinación.

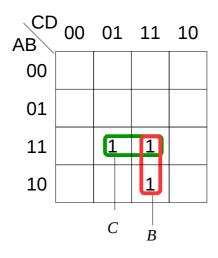
- a) Escriba la tabla de verdad de la función lógica de salida.
- b) Simplifique la función lógica mediante el método de Karnaugh.
- c) Implemente el circuito con puertas lógicas universales NOR.

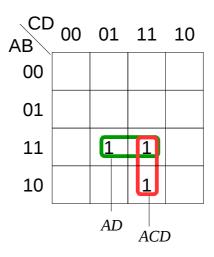
Solución

a)

Tabla de verdad – Condición activos los pesos 2³ y 2⁰ del número binario de 4 cifras.

A – peso 3	B – peso 2	C – peso 1	D – peso 0	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1


Función lógica construida mediante suma de productos (minterms).


$$S = A \overline{B} CD + AB \overline{C} D + ABCD$$

Construcción del Greycode para 4 cifras binarias

0	00	000	0000
1	01	001	0001
	-		
1	11	011	0011
0	10	010	0010
		110	0110
		111	0111
		101	0101
		100	0100
			1100
			1101
			1111
			1110
			1010
			1011
			1001
			1000

Simplificación mediante método de Karnaugh

Que C o B sean 1 o 0 no influye en el resultado de la función lógica, por tanto pueden ser eliminados.	AD = 1 significa que sólo para $A = D = 1$ se cumple la condición marcada en verde. $ACD = 1$ significa que sólo para $A = D = C = 1$ se cumple la condición marcada en rojo.
S = AD + AD + AD = AD	S = AD + ACD = AD(1 + C) = AD

c)
Para realizar la función utilizando sólo puertas NOR hay que convertir el producto en suma (teoremas de De Morgan)

Negativ AND = NOR

Negativ AND $S = \overline{A} \overline{B}$			
A	В	S	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

$ \begin{array}{c} NOR\\ S = \overline{A + B} \end{array} $			
A B S			
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Se aplica la transformación de Negative AND a NOR

$$S = AD = \overline{\overline{A} + \overline{D}}$$

Prueba mediante tabla de verdad

				1
A – peso 3	B – peso 2	C – peso 1	D – peso 0	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

$$S = \overline{\overline{A} + \overline{D}}$$

Ejercicio 3 - ejercicios_ed.pdf – pag. 1

Se pretende diseñar un sistema de control de apertura automática de una puerta de un garaje de una nave industrial para vehículos pesados. Dicha apertura depende de tres sensores. El primero detecta la presencia de un vehículo, el segundo la altura del mismo y el tercero su peso. Un "1" en el sensor de presencia indica que hay un vehículo; un "1" en el sensor de altura indica que el vehículo excede los dos metros de altura; un "1" en el sensor de peso indica que el vehículo supera las dos toneladas. La puerta sólo se debe abrir cuando haya un vehículo esperando que además supere las dos toneladas de peso.

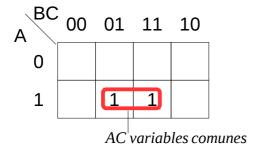
- a) Calcule la función lógica de salida del sistema de control de apertura de la puerta.
- b) Simplifique la función lógica mediante el método de Karnaugh.
- c) Implemente el circuito con puertas lógicas universales.

a)

Tabla de verdad

A presencia	B altura > 2 m	C peso > 2 t	Resultado del control S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Función lógica como suma de productos (minterms)


$$S = A \overline{B} C + ABC$$

b)

Se puede simplificar directamente con la regla de $A \overline{B} + AB = A(B + \overline{B}) = A 1 = A$

$$S = A \overline{B} C + ABC = AC$$

Pero como el enunciado pide el metodo de Karnaugh, lo aplicaremos aunque sea una tontería.

$$S = A \overline{B} C + ABC = AC$$

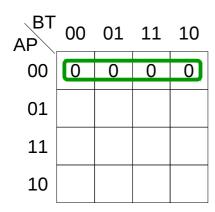
Ejercicio 4 - ejercicios_ed.pdf – pag. 1

Se pretende construir un circuito combinacional de control de paro automático del motor de un ascensor de un edificio. El funcionamiento del motor depende de 4 variables. En primer lugar, de que la puerta del ascensor esté abierta o cerrada (A); en segundo lugar, del peso de las personas que suben al ascensor (P); en tercer lugar, de que alguna de las persona haya pulsado los pulsadores de las distintas plantas (B); y por último, de la temperatura del motor (T). El motor se parará automáticamente siempre que la puerta del ascensor esté abierta, o bien se sobrepase el peso máximo, que es de 800 kg. T \rightarrow Temperatura; P \rightarrow peso; A \rightarrow puerta; B \rightarrow pulsador de planta

- a) Calcule la función lógica de salida de paro automático del motor del ascensor.
- b) Simplifique la función lógica mediante el método de Karnaugh.
- c) Implemente el circuito con puertas lógicas universales NAND.

a)
 La salida del paro automático se produce cuando la puerta del ascensor está cerrada (A = 0) y peso carga ≤ peso máximo = 800 kg → P = 0.

Tabla de verdad

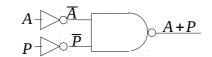

A – puerta abierta = 1 cerrada = 0	P – peso carga > 800 kg P = 1 carga <= 800 kg P = 0	B – pulsado planta no pulsado = 0 sí pulsado = 1	$T-temperatura \\ t < x = 0 \\ t > x = 1$	$S = 0 \rightarrow \text{salida paro}$ $S = 1 \rightarrow \text{paro}$
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Si hacer ningún cálculo se deduce que la función lógica simplificada es S = A + P

El enunciado pide función lógica para simplificar, así que se buscará una función canónica basada en la tabla de verdad utilizando productos de sumas (maxterms).

$$S = (A + P + B + T)(A + P + B + \overline{T})(A + P + \overline{B} + T)(A + P + \overline{B} + \overline{T})$$

b) Simplificación de $S=(A+P+B+T)(A+P+B+\overline{T})(A+P+\overline{B}+T)(A+P+\overline{B}+\overline{T})$ utilizando el método de Karnaugh.


$$S = A + P$$

c)

$$\overline{A} = A'$$

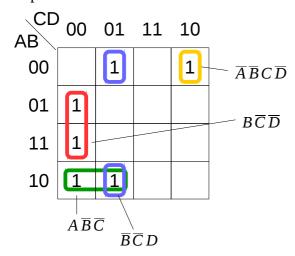
 $A'P' = (A + P)' \rightarrow (A'P')' = (A + P)'' = A + P$ (negative AND = NOR - teorema de De Morgan)

Ejercicio 5 - ejercicios_ed.pdf – pag. 1

Diseñe un circuito digital de control, que compare a la entrada dos palabras binarias de 2 bits (ab y cd), de manera que cuando la combinación binaria formada por los bits ab, sea menor que la combinación binaria formada por los bits cd, la salida sea 1.

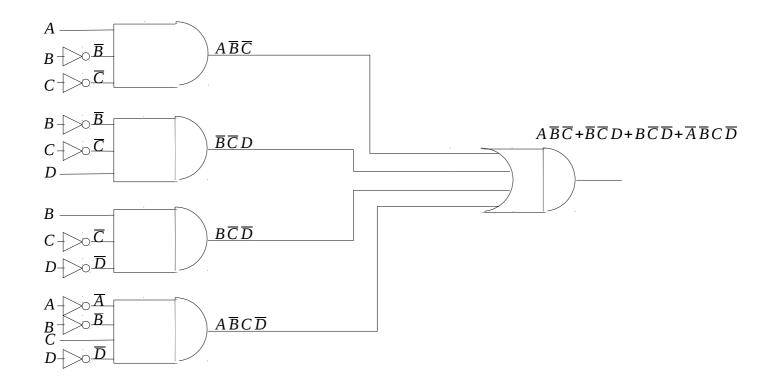
- a) Calcule la función lógica de salida.
- b) Simplifique la función lógica mediante el método de Karnaugh.
- c) Implemente el circuito con puertas lógicas universales NAND.

a)

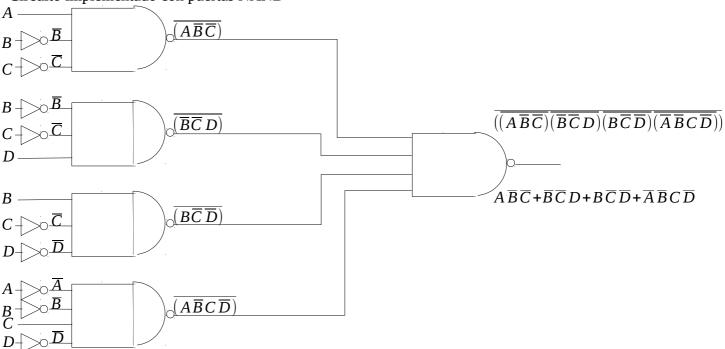

Tabla de verdad

A	В	С	D	S	
0	0	0	0	0	AB = 00, CD = 00 → AB = CD
0	0	0	1	1	$AB = 00$, $CD = 01 \rightarrow AB < CD$
0	0	1	0	1	$AB = 00$, $CD = 10 \rightarrow AB < CD$
0	0	1	1	1	$AB = 00$, $CD = 11 \rightarrow AB < CD$
0	1	0	0	0	AB = 01, CD = 00 → AB > CD
0	1	0	1	0	AB = 01, CD = 01 → AB = CD
0	1	1	0	1	$AB = 01$, $CD = 10 \rightarrow AB < CD$
0	1	1	1	1	$AB = 01$, $CD = 11 \rightarrow AB < CD$
1	0	0	0	0	AB = 10, CD = 00 → AB > CD
1	0	0	1	0	AB = 10, CD = 01 → AB > CD
1	0	1	0	0	AB = 10, CD = 10 → AB = CD
1	0	1	1	1	$AB = 10$, $CD = 11 \rightarrow AB < CD$
1	1	0	0	0	AB = 11, CD = 00 → AB > CD
1	1	0	1	0	AB = 11, CD = 01 → AB > CD
1	1	1	0	0	AB = 11, CD = 10 → AB > CD
1	1	1	1	0	AB = 11, CD = 11 → AB = CD

Construcción de función canónica utilizando suma de productos (minterms).


 $S = \overline{A} \, \overline{B} \, \overline{C} \, D + \overline{A} \, \overline{B} \, C \, \overline{D} + A \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{B} \, \overline{C} \, D + A \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D}$

b) Simplificación de S mediante método de Karnaugh


$$S = A \, \overline{B} \, \overline{C} + \overline{B} \, \overline{C} \, D + B \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, C \, \overline{D}$$

Circuito implementado con puertas AND y OR

$$A'B' = (A + B)'$$
 (negative AND = NOR - De Morgan) \rightarrow $(A'B')' = (A + B)'' = A + B$

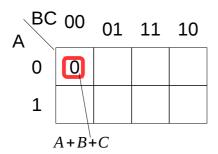
Circuito implementado con puertas NAND

Ejercicio 6 - ejercicios_ed.pdf – pag. 1

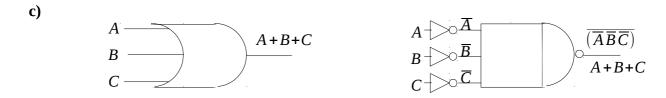
6. La apertura y cierre del tejado de un invernadero de flores de decoración depende del estado de 4 sensores que controlan la temperatura (T), la velocidad del viento (V), la presión atmosférica (P) y la humedad del ambiente (H). El cierre se producirá de manera automática cuando se active un motor controlado por la señal de salida del circuito de control que queremos diseñar. Dicha señal de salida pondrá en funcionamiento el motor siempre y cuando se produzca alguna de las siguientes condiciones climatológicas:

T ACTIVO → La temperatura ambiente supera los 30 °C; V ACTIVO → Velocidad del viento superior a los 50 Km/h; H ACTIVO → Humedad inferior al 40 %.

- a) Calcule la función lógica de salida del circuito que activa el motor de cierre.
- b) Simplifique la función lógica mediante el método de Karnaugh.
- c) Implemente el circuito con puertas lógicas universales NAND ó NOR.


a)

A A = 0 si T <= 30 °C A = 1 si T > 30 °C	B B = 0 si V <= 50 km/h B = 1 si V > 50 km/h	C C = 0 si H >= 40% C=1 si H < 40%	S S = 0 → señal a motor 0 (desactivado) S = 1 → señal a motor 1 (activado)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1


Construcción de función canónica utilizando maxterms.

$$S=A+B+C$$

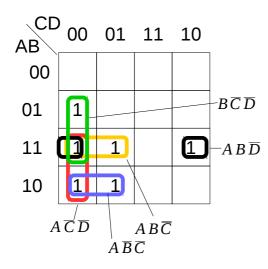
b)

La función S = A + B + C se encuentra en su forma más simple.

Ejercicio 7 - ejercicios_ed.pdf – pag. 2

- 7. Diseñe un circuito digital de control, que compare a la entrada dos palabras binarias de 2 bits (ab y cd), de manera que cuando la combinación binaria formada por los bits ab, sea mayor que la combinación binaria formada por los bits cd, la salida sea 1.
- a) Calcule la función lógica de salida.
- b) Simplifique la función lógica mediante el método de Karnaugh.
- c) Implemente el circuito con puertas lógicas universales NAND.

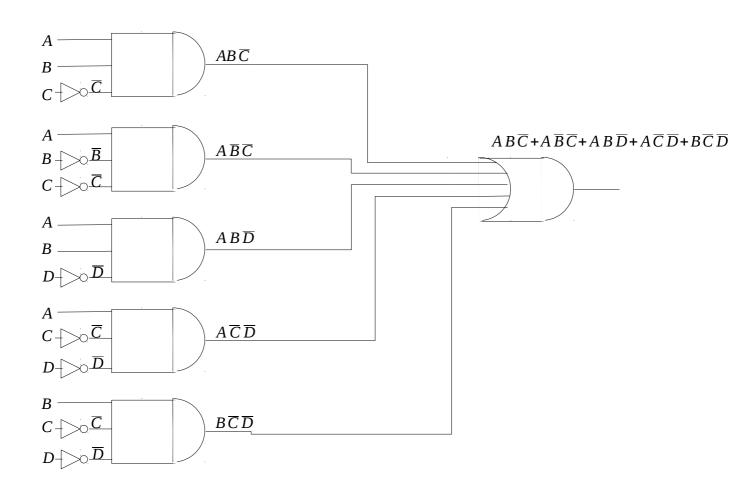
a)


Tabla de verdad

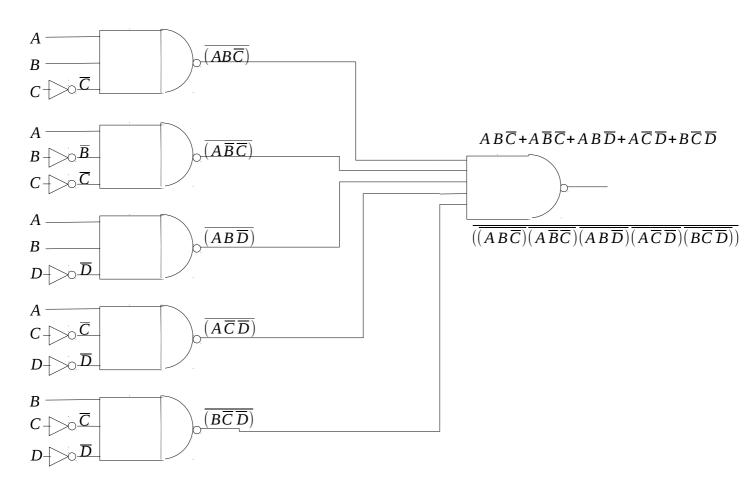
A	В	С	D	S	
0	0	0	0	0	AB = 00, CD = 00 → AB = CD
0	0	0	1	0	AB = 00, CD = 01 → AB < CD
0	0	1	0	0	$AB = 00$, $CD = 10 \rightarrow AB < CD$
0	0	1	1	0	$AB = 00$, $CD = 11 \rightarrow AB < CD$
0	1	0	0	1	$AB = 01$, $CD = 00 \rightarrow AB > CD$
0	1	0	1	0	AB = 01, CD = 01 → AB = CD
0	1	1	0	0	AB = 01, CD = 10 → AB < CD
0	1	1	1	0	AB = 01, CD = 11 → AB < CD
1	0	0	0	1	$AB = 10$, $CD = 00 \rightarrow AB > CD$
1	0	0	1	1	$AB = 10, CD = 01 \rightarrow AB > CD$
1	0	1	0	0	AB = 10, CD = 10 → AB = CD
1	0	1	1	0	AB = 10, CD = 11 → AB < CD
1	1	0	0	1	AB = 11, CD = 00 → AB > CD
1	1	0	1	1	$AB = 11, CD = 01 \rightarrow AB > CD$
1	1	1	0	1	$AB = 11, CD = 10 \rightarrow AB > CD$
1	1	1	1	0	AB = 11, CD = 11 → AB = CD

Construcción de función canónica utilizando suma de productos (minterms).

 $S = \overline{A} B \overline{C} \overline{D} + A \overline{B} \overline{C} \overline{D} + A \overline{B} \overline{C} D + A B \overline{C} \overline{D} + A B \overline{C} D + A B \overline{C} \overline{D}$


Simplificación de S mediante método de Karnaugh

$$S = A B \overline{C} + A \overline{B} \overline{C} + A B \overline{D} + A \overline{C} \overline{D} + B \overline{C} \overline{D}$$


c)

Circuito implementado con puertas AND y OR

Circuito implementado con puertas NAND

$$A'B' = (A + B)'$$
 (negative AND = NOR - De Morgan) \rightarrow $(A'B')' = (A + B)'' = A + B$

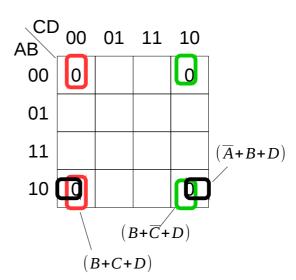
Ejercicio 8 - ejercicios_ed.pdf – pag. 2

- 8. Un sistema de control admite una combinación de entrada de 4 bits (a, b, c y d). A la salida, el circuito combinacional debe detectar cuándo están activos los pesos 2^0 ó 2^2 de la combinación digital de entrada.
- a) Calcule la función lógica de salida.
- b) Simplifique la función lógica mediante el método de Karnaugh.
- c) Implemente el circuito con puertas lógicas universales NAND ó NOR.

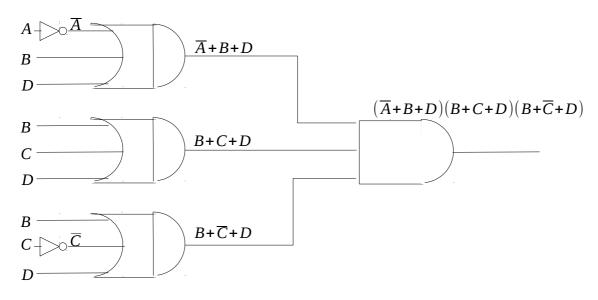
a)

Tabla de verdad

A – peso 3 2 ³	B – peso 2 2 ²	C – peso 1 2 ¹	D – peso 0 2º	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

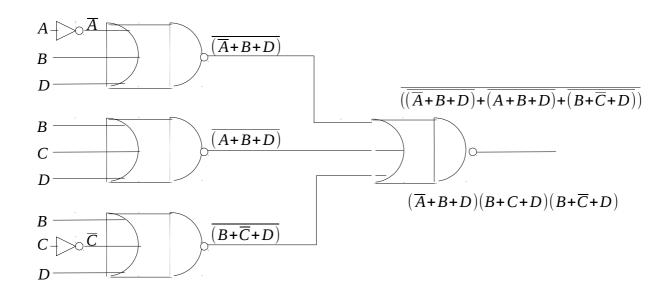

Construcción de función canónica utilizando producto de sumas (maxterms).

$$S = (A + B + C + D)(A + B + \overline{C} + D)(\overline{A} + B + C + D)(\overline{A} + B + \overline{C} + D)$$


b)

Simplificación mediante Karnaugh

$$S = (\overline{A} + B + D)(B + C + D)(B + \overline{C} + D)$$


Circuito implementado con puertas OR y AND.

$$A'B' = (A + B)'$$
 (negative AND = NOR - De Morgan) $\rightarrow (A'B')' = (A + B)'' = A + B$

$$A' + B' = (AB)'$$
 (negative $OR = NAND - De Morgan$) $\rightarrow (A' + B')' = (AB)'' = AB$

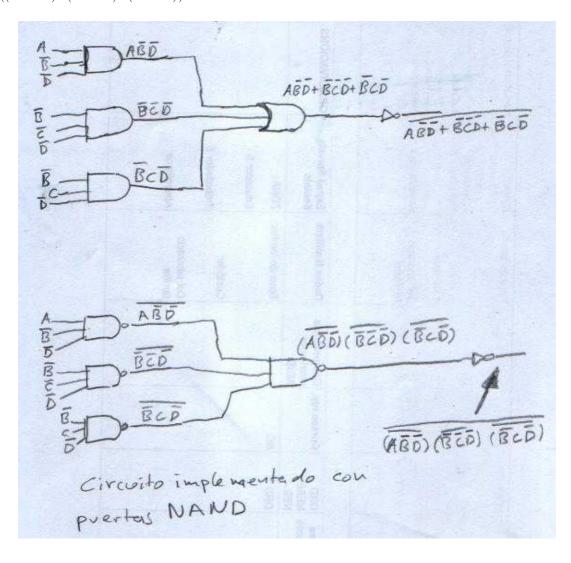
Circuito implementado con puertas NOR.

Para implementar el circuito con puertas NAND, es necesario transformar la función lógica en ua suma de productos.

$$S = (\overline{A} + B + D)(B + C + D)(B + \overline{C} + D)$$

$$A'B' = (A + B)'$$
 (negative AND = NOR - De Morgan) $\rightarrow (A'B')' = (A + B)'' = A + B$

$$A' + B' = (AB)'$$
 (negative $OR = NAND - De Morgan$) $\rightarrow (A' + B')' = (AB)'' = AB$

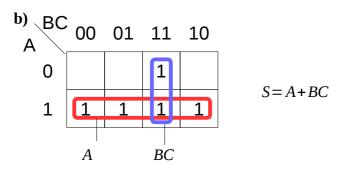

$$\overline{A} + B + D = \overline{(A \overline{B} \overline{D})}$$

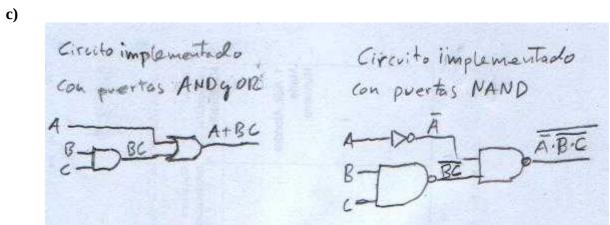
$$B+C+D=\overline{(\overline{B}\overline{C}\overline{D})}$$

$$B + \overline{C} + D = (\overline{BCD})$$

$$S = \overline{(A\overline{B}\overline{D})} \overline{(\overline{B}\overline{C}\overline{D})} \overline{(\overline{B}C\overline{D})}$$

$$S = \overline{((A\,\overline{B}\,\overline{D}) + (\overline{B}\,\overline{C}\,\overline{D}) + (\overline{B}\,C\,\overline{D}))}$$

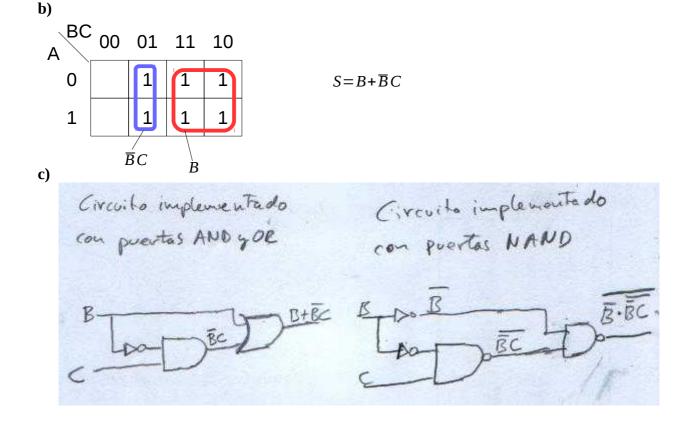

Ejercicio 9 - ejercicios_ed.pdf - pag. 2


- 9. Se desea diseñar el circuito de control de la señal de alarma de evacuación de una planta industrial de montaje. Para ello se dispone de tres sensores: un sensor de incendio (A), un sensor de humedad (B) y un sensor de presión (C).Los materiales con los que se trabaja en la planta de montaje son inflamables y sólo toleran unos niveles máximos de presión y humedad de forma conjunta. La señal de alarma se debe activar cuando exista riesgo de incendio o cuando se superen conjuntamente los niveles máximos de presión y humedad.
- a) Obtenga la tabla de verdad y la función lógica.
- b) Simplifique la función obtenida utilizando el mapa de Karnaugh.
- c) Implemente la función simplificada con puertas lógicas universales NAND de dos entradas.

$A \\ Sensor incendio \\ A = 0 \text{ no detecta incendio} \\ A = 1 \text{ incendio}$	B Sensor humedad B= 0 humedad <= límite máximo B = 1 humedad > límite máximo	C Sensor presión C= 0 presión <= límite máximo C = 1 presión > límite máximo	S Señal alarma S= 0 alarma apagada S= 1 alarma activada
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Obtención de la función lógica como suma de productos (minterms), ya que en c) se pide implementación con puertas NAND.

$$S = \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC$$


Ejercicio 10 - ejercicios_ed.pdf – pag. 2

- 10. Se desea diseñar el circuito de control de activación de un motor de una máquina trituradora. En la máquina existen tres sensores de llenado A, B, C. El motor entrará en funcionamiento cuando se activen conjunta o individualmente los sensores B y C.
- a) Obtenga la tabla de verdad y la función lógica.
- b) Simplifique la función obtenida utilizando el mapa de Karnaugh.
- c) Implemente la función simplificada con puertas lógicas universales NAND de dos entradas.

A	В	С	S Señal alarma S= 0 motor apagado S = 1 motor encendido
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Obtención de la función lógica como suma de productos (minterms), ya que en c) se pide implementación con puertas NAND.

$$S = \overline{A} \overline{B} C + \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} C + A B \overline{C} + A B C$$

Ejercicio 3 - ejercicios_ed.pdf – pag. 7

Problema 3

Dada la siguiente función:

$$S = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b$$

- a) Obtenga su forma canónica como suma de productos lógicos.
- b) Obtenga su expresión más significativa.
- c) Realice la función empleando sólo puertas NAND.

(Propuesto Andalucía 96/97)

¿Qué significa forma canónica de una función booleana?

Se llama forma canónica de una función booleana a todo producto de sumas o suma de productos en los cuales aparecen todas las variables en cada uno de los términos que constituyen la expresión, bien en forma directa, bien en forma complementada. Son ejemplos de formas canónicas las siguientes funciones

$$S_1 = a \cdot b \cdot \bar{c} + a \cdot \bar{b} \cdot \bar{c} + \bar{a} \cdot \bar{b} \cdot \bar{c}$$

$$S_2 = (a + b + c) \cdot (a + \bar{b} + \bar{c}) \cdot (\bar{a} + b + \bar{c})$$

https://tecnologiaelectron.blogspot.com/2014/03/forma-canonica-de-una-funcion-booleana.html

Solución

a)

Primer paso, simplificar la función $S = \bar{A} \bar{B} + \bar{A} \bar{C} + A \bar{B} \bar{C} + \bar{A} B$

$$\bar{A}\bar{B} + \bar{A}\bar{C} + A\bar{B}\bar{C} + \bar{A}B$$
 con $\bar{A}(\bar{B} + B) = \bar{A} \rightarrow$

$$\bar{A} + \bar{A}\bar{C} + A\bar{B}\bar{C}$$
 con $\bar{A} + \bar{A}\bar{C} = \bar{A} \rightarrow$

$$\bar{A} + A \bar{B} \bar{C}$$
 con $\bar{A} + A \bar{B} \bar{C} = \bar{A} + \bar{B} \bar{C} \rightarrow$

$$\bar{A} + \bar{B}\bar{C}$$

En este caso se han utilizado las reglas del álgebra booleana para la simplificación, pero se podía haber hecho también mediante el método de Karnaugh.

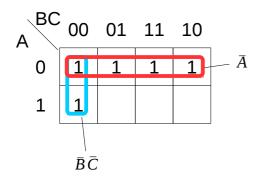
Segundo paso, crear la tabla de verdad

A	В	С	S
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Tercer paso observar los resultados S=1 para determinar una función canónica de suma de productos (minterms).

Una función canónica es: $S = \bar{A} \bar{B} \bar{C} + \bar{A} \bar{B} C + A \bar{B} \bar{C}$

Otra función canónica se podría haber obtenido de forma más sencilla utilizando el álgebra booleana.


$$S = \overline{A}\,\overline{B} + \overline{A}\,\overline{C} + A\,\overline{B}\,\overline{C} + \overline{A}\,B = \overline{A}\,\overline{B} + (C + \overline{C}) + \overline{A}\,\overline{C} + (B + \overline{B}) + A\,\overline{B}\,\overline{C} + \overline{A}\,B + (C + \overline{C})$$

$$S = \overline{A} \overline{B} C + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{C} B + \overline{A} \overline{C} \overline{B} + A \overline{B} \overline{C} + \overline{A} B C + \overline{A} B \overline{C}$$

b) La expresión más significativa es la máxima simplificación de la función lógica y fue calculado en el apartado a) $S = \overline{A} + \overline{B}\overline{C}$

Para simplificar $S=\bar{A}\,\bar{B}\,C+\bar{A}\,\bar{B}\,\bar{C}+\bar{A}\,\bar{C}\,B+\bar{A}\,\bar{C}\,\bar{B}+\bar{A}\,\bar{B}\,\bar{C}+\bar{A}\,B\,C+\bar{A}\,B\,\bar{C}$ se puede utilizar el método de Karnaugh

$$S = \overline{A} \overline{B} C + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{C} B + \overline{A} \overline{C} \overline{B} + A \overline{B} \overline{C} + \overline{A} B C + \overline{A} B \overline{C}$$

$$S = \bar{A} + \bar{B}\bar{C}$$

c)
$$S = \overline{A} + \overline{B}\overline{C}$$

Para realizar la función utilizando sólo puertas NAND hay que convertir la suma en un producto (teoremas de De Morgan)

Negativ OR = NAND

Negativ OR $S = \overline{A} + \overline{B}$				
A	В	S		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

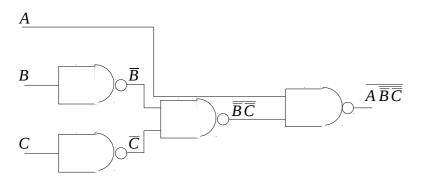
$ \begin{array}{c} NAND \\ S = \overline{AB} \end{array} $				
A	В	S		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

Negativ AND = NOR

Negativ AND $S = \overline{A} \overline{B}$				
A	В	S		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

$ \begin{array}{c} NOR\\ S = \overline{A + B} \end{array} $				
A	В	S		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

Se aplica la transformación de negativ OR a NAND


Primer paso escribir el producto del los terminos de la suma invertidos

 $\overline{\overline{A}}\,\overline{\overline{B}}\,\overline{\overline{C}}$

Segundo paso invertir el resultado

 $\overline{\overline{A}}\overline{\overline{B}}\overline{\overline{C}}$

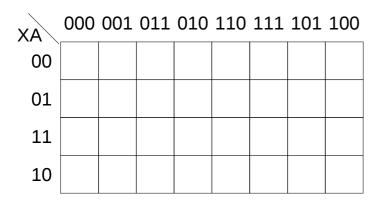
El resultado final es $S = \overline{A} + \overline{B} \overline{C} \rightarrow S = \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} = \overline{A} \overline{\overline{B}} \overline{\overline{C}}$

Ejercicio 2 - opo_exam_practica.pdf - pag. 4

2.- Diseñar con puertas lógicas un sistema de lotería para una máquina recreativa, de forma que si al colarse la bola en juego el número binario que forman cuatro interruptores situados sobre el tablero de juego equivale a alguno de los siguientes números decimales 4, 5, 8, 9, 11, 13, 15, se conceda bola gratis. Llamaremos a, b, c y d a los 4 pulsadores de mayor a menor peso en la cifra binaria y X al detector de bola tragada.

Solución 1 – larga y farragosa por utilizar un mapa de Karnaugh de 5 variables

Tabla de verdad

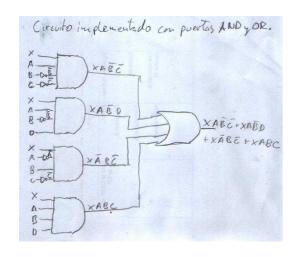

X X = 0 bola en juego X=1 bola tragada	A – peso 3 2 ³	B – peso 2 2 ²	C – peso 1 2 ¹	D – peso 0 2º	Z ₁₀	S
0	0	0	0	0	0	0
0	0	0	0	1	1	0
0	0	0	1	0	2	0
0	0	0	1	1	3	0
0	0	1	0	0	4	0
0	0	1	0	1	5	0
0	0	1	1	0	6	0
0	0	1	1	1	7	0
0	1	0	0	0	8	0
0	1	0	0	1	9	0
0	1	0	1	0	10	0
0	1	0	1	1	11	0
0	1	1	0	0	12	0
0	1	1	0	1	13	0
0	1	1	1	0	14	0
0	1	1	1	1	15	0
1	0	0	0	0	0	0
1	0	0	0	1	1	0
1	0	0	1	0	2	0
1	0	0	1	1	3	0
1	0	1	0	0	4	1
1	0	1	0	1	5	1
1	0	1	1	0	6	0
1	0	1	1	1	7	0
1	1	0	0	0	8	1
1	1	0	0	1	9	1
1	1	0	1	0	10	0
1	1	0	1	1	11	1
1	1	1	0	0	12	0
1	1	1	0	1	13	1
1	1	1	1	0	14	0
1	1	1	1	1	15	1

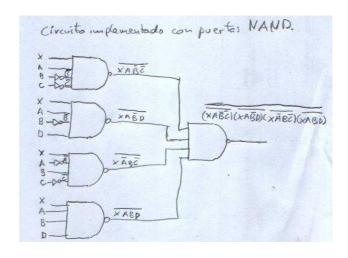
Obtención de la función lógica como suma de productos (minterms), ya que en el número de minterms (S=1) = 7 < número de maxterms (S=0) = 25. La función lógica simplificada será una suma de productos y se implementará con puertas NAND.

 $S = X \overline{A} B \overline{C} \overline{D} + X \overline{A} B \overline{C} D + X A \overline{B} \overline{C} \overline{D} + X A \overline{B} \overline{C} D + X A \overline{B} \overline{C} D + X A B \overline{C$

Conoraci	ón do cód	igo Crov po	ra 5 variables	
0	00	000	ra 5 variables 0000	00000
1	01	001	0001	00001
1	11	011	0011	00011
0	10	010	0010	00010
		110	0110	00110
		111	0111	00111
		101	0101	00101
		100	0100	00100
			1100	01100
			1101	01101
			1111	01111
			1110	01110
			1010	01010
			1011	01011
			1001	01001
			1000	01000
			1000	11000
			1001	11001
			1011	11011
			1010	11010
			1110	11110
			1111	11111
			1101	11101
			1100	11100
			0100	10100
			0101	10101
			0111	10111
			0110	10110
			0010	10010
			0011	10011
			0001	10001
			0000	10000

Mapa de Karnaugh con código Grey en las 5 variables BCD




Mapa de Karnaugh modificado con código Grey en las 4 variables de menos peso.

BCD 000 001 011 010 100 101 111 110 00 No sigue código Grey 01 1 11 1 1 1 1 10 1 1 $X \overline{A} B \overline{C}$ $X A \overline{B} D$ $X \overline{A} \overline{B} \overline{C}$ XABD

Función lógica simplificada como suma de productos (minterms).

$$S = X A \overline{B} \overline{C} + X A \overline{B} D + X \overline{A} B \overline{C} + X A B D = X (A \overline{B} \overline{C} + A \overline{B} D + \overline{A} B \overline{C} + A B D) = X (A \overline{B} \overline{C} + \overline{A} B \overline{C} + A D)$$

Solución 2 – elegante por utilizar un mapa de Karnaugh de 4 variables, en vez de 5.

La bola gratuita se concede cuando se cumplen simultaneamente (relación lógica AND) las condiciones de que X = 1 (bola tragada) y las variables A, B, C y D equivalen a uno de los siguientes números decimales 4, 5, 8, 9, 11, 13, 15.

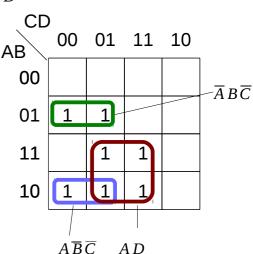
La variable X indica:

X= 1 bola tragada

X= 0 bola en juego

Se observará una tabla de verdad para las variables A, B, C y D. La función resultante S1 de esta tabla se multipilcará por X (relación lógica AND).

A – peso 3 2 ³	B – peso 2 2 ²	C – peso 1 2 ¹	D – peso 0 2º	Equivalente decimal	S1
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	2	0
0	0	1	1	3	0
0	1	0	0	4	1
0	1	0	1	5	1
0	1	1	0	6	0
0	1	1	1	7	0
1	0	0	0	8	1
1	0	0	1	9	1
1	0	1	0	10	0
1	0	1	1	11	1
1	1	0	0	12	0
1	1	0	1	13	1
1	1	1	0	14	0
1	1	1	1	15	1


Obtención de la función lógica como suma de productos (minterms), ya que en el número de minterms (S=1) = 7 < número de maxterms (S=0) = 9. La función lógica simplificada será una suma de productos y se implementará con puertas NAND.

$$S1 = \overline{A} B \overline{C} \overline{D} + \overline{A} B \overline{C} D + A \overline{B} \overline{C} \overline{D} + A \overline{B} \overline{C} D + A \overline{B} \overline{C} D + A \overline{B} \overline{C} D + A \overline{B} \overline{C} D$$

Simplificación de la función lógica mediante mapa de Karnaugh

$$S1 = A \overline{B} \overline{C} + \overline{A} B \overline{C} + AD$$

$$S = X S1 = X (A\overline{B}\overline{C} + \overline{A}B\overline{C} + AD)$$

